Behavioral analysis of anisotropic diffusion in image processing
نویسندگان
چکیده
In this paper, we analyze the behavior of the anisotropic diffusion model of Perona and Malik (1990). The main idea is to express the anisotropic diffusion equation as coming from a certain optimization problem, so its behavior can be analyzed based on the shape of the corresponding energy surface. We show that anisotropic diffusion is the steepest descent method for solving an energy minimization problem. It is demonstrated that an anisotropic diffusion is well posed when there exists a unique global minimum for the energy functional and that the ill posedness of a certain anisotropic diffusion is caused by the fact that its energy functional has an infinite number of global minima that are dense in the image space. We give a sufficient condition for an anisotropic diffusion to be well posed and a sufficient and necessary condition for it to be ill posed due to the dense global minima. The mechanism of smoothing and edge enhancement of anisotropic diffusion is illustrated through a particular orthogonal decomposition of the diffusion operator into two parts: one that diffuses tangentially to the edges and therefore acts as an anisotropic smoothing operator, and the other that flows normally to the edges and thus acts as an enhancement operator.
منابع مشابه
Application of iterative Jacobi method for an anisotropic diusion in image processing
Image restoration has been an active research area. Dierent formulations are eective in high qualityrecovery. Partial Dierential Equations (PDEs) have become an important tool in image processingand analysis. One of the earliest models based on PDEs is Perona-Malik model that is a kindof anisotropic diusion (ANDI) lter. Anisotropic diusion lter has become a valuable tool indierent elds of image...
متن کاملImage Denoising Using Anisotropic Diffusion Equations on Reflection and illumination Components of Image
This paper proposes a new hybrid method based on Homomorphic filtering and anisotropicdiffusion equations for image denoising. In this method, the Homomorphic filtering extracts the reflectionand illumination components of a noisy image. Then a suitable image denoising method based onanisotropic diffusion is applied to each components with its special user-defined parameters .This hybridscheme ...
متن کاملAnisotropic Diffusion in ITK
Anisotropic Non-Linear Diffusion is a powerful image processing technique, which allows to simultaneously remove the noise and enhance sharp features in two or three dimensional images. Anisotropic Diffusion is understood here in the sense of Weickert, meaning that diffusion tensors are anisotropic and reflect the local orientation of image features. This is in contrast with the non-linear diff...
متن کاملAnisotropic Diffusions of Image Processing From Perona-Malik on
Many reasons can be cited for the desire to harness the power of nonlinear anisotropic diffusion in image processing. Perona and Malik proposed one of the pioneering models which, while numerically viable, proves mathematically ill-posed. This discrepancy between its analytical properties and those of its numerical implementations spurred a significant amount of research in the past twenty year...
متن کاملNew PDE-based methods for image enhancement using SOM and Bayesian inference
A novel approach is presented in this paper for improving anisotropic diffusion PDE models, based on the Perona–Malik equation. A solution is proposed from an engineering perspective to adaptively estimate the parameters of the regularizing function in this equation. The goal of such a new adaptive diffusion scheme is to better preserve edges when the anisotropic diffusion PDE models are applie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
دوره 5 11 شماره
صفحات -
تاریخ انتشار 1996